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ELECTRON!C POLARIZABILITIES AND STERNHEIMER SHIELDING FACTORS

ABSTRACT

A new method is developed for determining the distortions (polariza-
bilities) induced in electronic distributions by valence electrons and/or
crystalline fields and their effect (expressed as Sternheimer shielding
factors) on magnetic and electric hyperfine interactions. For illustrative
purposes emphasis is placed in this paper on the calculation of Sternheimer
anti-shielding factors (¥,). Working within the framework of the Hartree-
Fock self-consistent-field formalism, it is shown that the 'angular' ex-
citations are gotten by relaxing the usual restriction that the spatial
part of the one-clectron functions be separable into a radial function
times an angular function; relaxing the restriction that electrons of the
same shell but differing in magnetic quantum number (myg) have the same
radial function yields the 'radial' excitations. To illustrate the method,
calculations are reported for several spherical ions (C1~ and Cu*) in an
external field, but the scheme is also applicable to the problem of induced
electric quadrupole (and magnetic dipole and higher multipole) distortions
of an ion by its own aspherical charge distribution. The problems of
orthogonality, exchange, and self-consistency, which have complicated
applications of the perturbation method are easily resolved by this approach.
Further, since a self-consistent field procedure is followed, the distortions
induced in the inner closed shells by the distorted outer shells are included
in a natural way and by comparison with the results of the perturbation-
variation method (which does not take these into consideration), these
additional effects are shown to be significant.
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I. INTRODUCTION

Electric quadrupole and magnetic dipole interactions between atomic
nuclei and outer electron distributions have been measured in atoms and
molecules, and in metals and salts by a variety of methods and most recently
by recoil-less emission and absorption of Y-rays (the M8ssbauer effect).

As emphasized by Sternheimerl, the interpretation of these experiments (such
as the measurement of the nuclear quadrupole moment Q) is complicated by the
contributions to the hyperfine interactions arising from the distortion of
the otherwise spherical closed electronic shells of the system. One of
Sternheimer’s important contributions was the striking demonstration that,
for an ion having a nuclear quadrupole moment, the quadrupole interaction
arising from the field induced (1) by external charges (as in a salt), or
(2) from the ion's own aspherical charge distribution (if the ion is not
spherically symmetrical), was changed appreciably by the distortion of the
ion’s closed shells. Following Sternheimer’s pioneering investigationl,
much work has been done using the perturbation-variation techniques which

he developed; more recently Das and Bersohn have used? a (less precise)
analytic function, instead of the more laborious numerical integration
procedure in solving the perturbation theory equations.

In this paper?, we develop a method for calculating, within the Hartree-
Fock formalism, the distortions induced in electronic distributions by
valence electrons and/or crystalline fields and their effects on magnetic
and electric hyperfine interactions. For illustrative purposes emphasis
is placed on the calculation of Sternheimer quadrupole polarizabilities and
anti-shielding factors, and some results are reported for the anti-shielding
factors (y,) of Cu* and C1°. Since a self-consistent field procedure is
followed, the distortions induced in the inner closed shells by the distorted
outer closed shells are included in a natural way and by comparison with
the results of the perturbation method (which does not take these into
consideration) these additional effects are shown to be significant. The
problems of orthogonality, exchange, and self-consistency which have
complicated applications of the perturbation method are easily resolved by
this approach. Although the present results are for spherical ions in an
external field our method is also applicable to the problem of induced
electric quadrupole (and maguetic dipole and higher multipole) distortions
of an ion by its own aspherical electronic charge distributions (e.g., 3d
or 4f electrons), a problem recently highlighted by M8ssbauer measurements.
In contrast to the present approach, perturbation theory calculations for
these are difficult to carry out.

IT. PERTURBATION-YARIATION METHOD

The perturbation theory approach to the problem of the polarization of
electron shells of atoms and ions has been discussed previously at lengthl:4:5,
Some brief details will be given here in order to provide a framework for
discussing our method and for making comparisons



Writing the Hamiltonian in the usual form, H = H, + Hj, with H  the
unperturbed Hamiltonian and H, a perturbing pocenclal. the first order

perturbation ¢1 Cr) to the unparturbed solution, ¢ (r), is determined from
the relation

(H, - Ej,(r) = = (H, - E)¥,(r) (1)

which was obtained by applying the variational principle to the perturbation
equations. Here

E° - <¢°|H°|‘//°>' El = <¢°|H1|¢°>i -and <¢'°l¢’1 > = 0.

Equation 1 has been solved in two distinct ways: (a) by exact numerical
solution, as was done by Sternheimer and collaborators!, and (h) by, the
analytic approach of Das and Bersohn? in which the radial part of ¢ (r) is
assumed to be related to the radial part of ¢°(r) by

ui(r) = ul(r) 3 a, r* (2)

and the parameters a_ are determined by minimizing the energy with respect
to variation of these parameters. This technique has the advantage of being
easier to carry out than Sternheimer’s but is inferior because full varia-
tional freedom is not accorded to u} (e.g., if u; is a noded function then
ui is constrained to have the same nodes). In more recent applications the
problems of properly maintaining orthogonality®, self-consistency?, and in-
cluding exchange®, have been emphasized.

Since for quadrupole interactions the perturbing potential H, has Yo
(6,¢) symmetry, perturbed orbital character will be mixed into the unper-
turbed orbitals, 9 in the following ways:

Vo-N, W2+ ¥y)
YON (YO + ¢! + yp) (3)
p PP p £/

UPN W v g+ by, r g, ) DL

where the N, are normaliration constants. The mixing of a Y’ of £ in common
with y0 is called a "radial” excitation whereas the ' components having
4 ¢+ 2 are called "angular” excitations.

Sternheimer first discussed the two cases already referred to: (1) H,
arising external to the ion and (2) H, due to an aspherical unclosed
electron shell within the ion. Case t2) and in particular the associated
magnetic hyperfine effects will be discussed in subsequent papers; in what
follows we shall outline our method and present results only for case (1).
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For a quarupole potential due to charges external to the central ion,
the interaction with the nuclear quadrupole moment, Q, is given as e¢? q Q,
where q is the external charge electric field gradient at the nucleus,
Sternheimer found that the external potential distorted the electron shells
of the ion and that this distortion also interacted with Q giving a total
interaction of the form

Ho=e?aQ (1 - %) (4)

Here ¥, is the Sternheimer antishielding factor. For ions consisting of
more than closed s shells, 7, is negative and large (typicallly -10 to -100).
The "radial® contributions ta 7, are generally much larger than (and of
opposite sign to) the "angular" coptributions.

ITI. HARTREE-FOCK SELF-CONSISTENT FIELD METHOD
AND
QUADRUPOLE POLARIZABILITIES

Spin (or exchange) polarized Hartree-Fock calculations have recently
played & prominent role in understanding magnetic hyperfine interactions?.
As has been previously diacussed, such calculations involve relaxing the
restriction imposed on conventional atomic Hartree-Fock solutions that
electrons in the same shell but differing in spin (i.e., m, quantum number)
have the same radial wave function.

The m_, restriction is not the only one imposed on H-F solutions?® Two
other constraints, which concern us here, are: (A) that the spatial part
of the one-electron functions be separable into a radial function times and
angular function (for free ions this is a single spherical harmonic)'and (B)
that electrons of the same shell but of differing magnetic quantum number
(mg) have the same radial wave function. These restrictions lead to the
shell structure description of atoms, molecules, and solids but are only
rigorously valid for closed shell atoms; their imposition gives not only a
physically simple picture of electronic systems but also allow the computa-
tions to be of reasonable magnitude, By analogy with the well-known spin-
polarized H-F calculations one may conveniently define calculations in
which restriction (B) is relaxed as "orbitally"® polarized H-F calculations,

We have investigated the physical consequences of relaxing conditions
(A) and (B) and have found that quadrupole polarizabilities and Sternheimer
anti-shielding factors can be obtained by these means. Relaxing (A) results
in "angular” distortions of the electron shells whereas relaxing (B) yields
*radial® distortions. (Eq. 3 was written so as to make this appear more
self-eviddnt.,. The method is applicable to the distortions due to either
the case of an external perturbing field%or that arising from an ion's
aspherical charge distribution. For a purely ionic crystal "potential®,
such as the one we discuss in this paper, only electric hyperfine effects
are induced! the case of induced magnetic and electric hyperfine ineractions
due to an unclosed shell with the ion will be discussed in a future paper,
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A. Method of Computation

For simplicity, consider a closed shell ion (e.g., C1~ and Cu*) in the
field of a single external point charge a distance R away. In atomic units,
the quadrupole term of the potential expanded in spherical harmonics and
powers of r (the distance from the nucleus having quadrupole moment, Q, to
some. point P), is simply

Vo= - z2v/8/5 ® (2.0)_'.2 (5)
R3

where Z is the magnitude of the point charge and ® (2,0) is the normalized
spherical harmonic defined by Condon and Shortley. In order to carry out
the computations, we include V_ into our free ion Hamiltonian and rederive
the Hartree-Fock equations. These equations are then solved (in principle)
in a straightforward way; in practice, only the radial anti-shielding terms
have been obtained as this can be done with existing H-F computational
machinery. The less important angular distortions require a H-F treatment
involving functions of mixed angular character and can be obtained if one
utilizes and extends existing analytic H-F techniques!®. Since any errors
associated with crude estimates of angular anti-shielding tend to be dwarfed
by inadequacies associated with the crystal field model used in ¥, investiga-
tions (to be discussed later), the -effort necessary to extend the H-F
computational machinery to include angular anti-shielding did not seem
warranted here.

The computations were done with analytic H-F methods used and described
previously!?:14 A quadrupole field due to an external charge distribution
was included in the Hamiltonian from which the H-F equations were derived,
subject to restriction (B) being relaxed. In the solution of these equa-
tions, the ion's shells were self-consistently distorted and the quadrupole
interaction of these distortions with the ion’'s nucleus then yielded!¥7yy.

Using this scheme, calculations have been done for Cl1°~ and Cu'. The
anti-shielding for these ions is of considerable interest; numerical and
analytic perturbation results already exist so that comparisons may be
readily made. In the course of the investigation, a conventional H-F cal-
culation was also done for Cu* which is of greater accuracy than those
appearing in the literature. The resulting one-electron functions are
tabulated in Appendix I. The basis set appearing in this calculation was
used in the 7, calculation. A previously published conventional H-Fl4 basis
set was used for Cl1-.

B. Results

The radial contributions to ¥, as given by SCF and perturbation theory
‘calculations for Cu* and C1~ are listed in Table I. The three sets of
results are seen to be in very good agreement for Cu* but differ markedly
for C1°. Perhaps the most significant feature of the results is the increase
in Y2p~p by a factor of two for Cu* and eight for C1-. These increases
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‘arise from the distortions produced in the inner 2p shells by the distorted
outer 3p (and 3d) shells - distortions which are included in our SCF treat-
ment but not in the perturbation theory approach. Upon reflection it may
appear somevhat surprising that the inner shell enhancement is not even
greater for this shell in view of the large distortions of the outer shells
produced by the applied field. However, the ¥ Pﬂp‘s are not enhanced by
factors proportional to the 7, ‘p's because uni:ke the nucleus, the 2p
shell is overlapped by the 3p ?and 3d) shell. As soon as the perturbing
charge overlaps the perturbed shell one must replace the point charge
potential Vq given by Eq. 5 by

V (] p(x) X2 dx + Tolx) E2 dx (6)
[ rd r x3

where po(x) i1s the radial distribution of the perturbing charge density.
Such a distributed charge yields a smaller Y 2p= than would either a V

given by Eq. 5 or one arising from a distributed charge completely external
‘to the 2p shell. 1In fact, a perturbation theory estimate of the Cl'72 -p?
utilizing Eq. 6 and a p(x) consisting of the external charge plus the ﬁis-
torted 3p shell, crudely reproduces (to better than a factor of two) the
value appearing in Table I. 1In other words, where anti-shielding is con-
cerned, a shell such as the 2p is far from being completely "inside* a 3p
(or 3d) shell. (If it were otherwise we would have a C1~ ¥,p.,, of ~-100.)

TABLE 1
COMPARISON OF "RADIAL"™ CONTRIBUTIONS TO Yo
Second Order Perturbation Theory

. Analytical-
C1 Present Results Nusmerical® variational*®
2p -12.1 - 1.5 ~ -1
3p -78.3 -56.5 -50 to -60
Cut
2p - 1.2 - .62 - 6
3p -7.8 -7.9 -5.8
3d - 8.6 -8.5 -8.6

1f one assumes that the enhanced SCF ¥y 4 values are entirely
associated with self-consistency (i.e., an aspherical potential which in-
cludes the effects of the closed shell distortions), one can use the
results of Table I to estimate the same effect on the angular ¥ terms,
Results are givenl® in Table II where estimates of the total 7,'8 are also
listed. One could instead directly estimate the angular Sternheimer anti-
shielding utilizing Eq. 6; for C1° this method gave the 7, (angular) value
of 3.4 appearing in Table II.

*R.N. Sternheimer and H.N. Foley, Phys. Rev. 102, 731 (1856).
**E.G. Wikner and f.P. Das, Phys. Rev. 109, 360 (1858).
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TABLE 11
RADIAL AND ANGULAR CONTRIBUTIONS TO 7, .FOR C1~ AND cut

a1 ot
Second Order Second Order
Present Perturbation | Present | Perturbation
Results Theory Results Theory
Ve (radial) -90.4 -58.0 -17.6 -17.0
Yo (angular) 3.4 to 5.5 1.5 ~ 0.6 ~ 0.1
TOTAL 7y, -87.0 to -84.9 -56.5 -17.0 -16.9

It is, of course, naive to expect that the differences between the
perturbation theory and SCF results of Table I are due entirely to self-
consistency. Khubchandani, Sharma, and Das!’ using a modification of
Dalgarno’s method® for including exchange, showed that the omission of
exchange in the standard perturbation calculations can be numerically
significant and Ingall’s has shown® that the maintainance of orthogonality
can have severe effects op a computed ¥,. Let us now examine the most
noticeable feature of the results listed in Table I, i.e., the substantially
larger value for the C1° 3p term (Y30-p) which we have obtained. In order

. . . Pp . .
to determine the cause of this difference we have carried out a series of
analytic perturbation calculations for Y2p and ¥, . of Cl~ maintaining
orthogonality in a variety of ways. From the resui s we conclude that the
increased SCF value for v, __is largely due to the proper maintainance of
orthogonality with the 2p shell. (These computations also agree with
Ingall’s observation that the results are extremely sensitive to the way
that orthogonalization is carried out; details will be given in a future
publication.)

A detailed breakdown of the respective roles of self-consistency,
exchange and orthogonality has not been attempted but it appears that the
former is important for inner shells and that the latter contributes
heavily to the final character of outer shell yg ;4 terms.

IV. DISCUSSION

Orthogonality, self-consistency, and exchange are naturally and
properly handled by the method we are proposing; in addition, the method
is computationally practicable. For these reasons, we believe its use
offers important advantages over the traditional methods for obtaining 7,'s.

A major defect of any of the methods for obtaining ¥, lies in the
deficiencies introduced by the approximate form of the assumed perturbing
potential. For a given external potential for which a 7, has been computed,
there still remains the question of agreement with a v derived somehow from
qQ(1 - ) gotten from experiment. The absence of exact values of q and Q

*R.N. Sternheimer (unpubdblished).



make it impossible to make definite statements concerning this question
but it has been suggested!® that ¥'s of the order of -10 to -15 are appro-
priate for C1° and Cu* implying that the calculated value of ¥, for C1° is
a severe overestimate whereas the Cu* value is only slightly so. This
comparison raises doubts concerning the accuracy of a computed q and the
related V_, which go beyond the question of defining a potential in that
it involves the concept of an "ion" in a solid and of the "potential”
associated with it. It may be argued that such a model is inadequate for
the problems of interest to us here; let us consider this matter.

The lattice sum over ion point charges, which is normally done when
estimating an electric field gradient, yields a potential of the form of
Eq. 5. Although the results may be adequatel® for obtaining the direct
quadrupole interaction with the nucleus, such a sum leaves much to be
desired when used as the perturbing potential seen by the ion’s electrons
because the ion's charge density overlaps that of the neighboring ion
electrons and nuclei. Hence, a potential of the form r2Y2(8,4) is clearly
not appropriate over that region. In addition to more accurately defining
an electrostatic field, problems associated with wave function orthogonality
(between neighboring ions) and covalency (if some of the ions have unclosed
shells) occur. Also the crystal potential will have components of other
than quadrupole symmetry which may distort the ion and in turn affect the
electronic quadrupole distortion. For example, it has been argued that the
tendency of negative ions to contract when inserted into ionic crystals may
possibly result in severe repercussions!® for 7_.

The importance of some of these problems can be illustrated if we
consider ¥ computed as a function of the distance (R) of the source of q
from the nucleus in question; utilizing Eq. 6, with o(x) = 8(x - R), one
obtains Sternheimer’s 7y (R) factorl, The yapﬁp result for C1~ is plotted
as the ratio y(R)/y, in Figure 1. Since internuclear spacing are typically
of the order of 5 a.u., the arguments of the previous paragraph are made
more apparent by the variation of y(R) with R which is seen in the figure.
At best, this means that nonquadrupole crystal field effects and ortho-
gonalization repercussions must be dealt with before a realistic value is
obtained for . At worst, it may mean that the tight binding approach of
perturbing an essentially free ion by a crystalline environment must be
abandoned before a substantial improvement over current Y, estimates is
made
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APPENDIX |

A conventional H-F Cu* wave function, superior to those in the
literature, is tabulated here whose accuracy is similar to a previously
reported?9Mn2* wave function. Orthonormal analytic Hartree-Fock orbitals,
U; (r), of the form

U (r) =% Cyy Ry () A(1)

1

were obtained, normalized such that

Tlu, o2 dr = 1. A(2)
o

The basis functions, Rj, are of the form

*1) -2.r

£ + A . % AG3)

Rj (r) = Nj r

where N. is a normalization constant and is expressible in terms of the
other parameters, i.e., '

+3
S TP INTWNP ST L AG4)

U;(r) of common 4 value are constructed from a common set of R.(r)’s.

Zj's, Aj’s and combining coefficients (C;.’s) are listed in Taéle III; the
one-electron energies are given in Table iV. The C,.’s define orthonormal
functions to the number of digits reported but have gy no means been
uniquely determined to that number of digits. The total energy for the ion
is -1638.724, a.u. as compared with -1638.705 a.u. obtained in a previous
calculationxﬁ The improvement is primarily associated with the greater
variational freedom allowed to the outer parts of the 3s and 3p shells;
repercussions on the 3d shell were small,
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TABLE III

PARAMETERS (A, AND Z,) AND COMBINING COEFFICIENTS
(cij) DEFINING THE HARTREE-FOCK ORBITALS FOR cut

j Aj zj Cl'a j CZI. j cal. j
1| o | 848828 | .00037044 | -.00036468 | -.00038449
2| o | 30,4400 | .01205876 | -.27950925 | .10652016
al1 | 26.9961 | .10841891 | -.16245115 | .04976048
4| 1 | 14.2023 | -.00647884 | .ca460027 | -.21227812
5| 2 | 13,3207 | .o0s61417 | .46415723 | -.38260515
6| 2 | e.5681 | -.00204424 | .06610423 | .17263858
7| 2 | s.0e82 | .o00065755 | -.00454834 | .s4245212
8] 2 | 2.8171 | -.00016921 | .00134453 | .07547339
Cop.j Cap. j
9| o | 34.5244 | .00103326 | .00096650
10| o | 18,9852 | .13481246 | -.05841121
11| o | 11,6372 | .s4951100 [ -.29915630
12| 1 | 10,8502 | .oz041835 | -.11625686
13| 1 | s.8083 | .02746108 | .s4128259
14] 1 | 3.%668 | -.00525461 | .63298421
15| 1 | 2.2563 | .o0172020 | .02228438
G, j
16| o | 1.6356 | .19657400
17} o | 2.4954 | .25771318
18| o | 4.z881 | .46578549
19| o | 7.500s | .24455545
20| o | 13.0768 | .02287080
TABLE 1V

ONE-ELECTRON ENERGIES FOR Cut IN ATOMIC UNITS
(1 a,u. = 2 ry)

€, = -320.11 €pp = -35.828

€50 = - 41.127 €4p = - 3.651

3p

€gp = - 5.3 €4q = - 0.8099
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